# Projective Geometric Algebra: A Swiss army knife for doing Cayley-Klein geometry 

## Charles Gunn

Sept. 18, 2019 at ICERM, Providence

Full-featured slides available at: https://slides.com/skydog23/icerm2019.
Check for updates incorporating new ideas inspired by giving the talk.
This first slide will indicate whether update has occurred.


## What is Cayley-Klein geometry?

Example: Given a conic section $\mathbf{Q}$ in $\mathbb{R} P^{2}$.
For two points $x$ and $y$ "inside" $\mathbf{Q}$, define

$$
d(a, b)=\log \left(C R\left(f_{+}, f_{-} ; x, y\right)\right)
$$

where $f_{+}, f_{-}$are the intersections of the line $x y$ with $\mathbf{Q}$ and CR is the cross ratio.

CR is invariant under projectivities
$\Rightarrow d$ is a distance function and the white region is a model for hyperbolic plane $\mathbf{H}^{2}$.


## What is Cayley-Klein geometry?

## SIGNATURE of Quadratic Form

Example: $(++-0)=(2,1,1)$

$$
e_{0} \cdot e_{0}=e_{1} \cdot e_{1}=+1, e_{2} \cdot e_{2}=-1, e_{3} \cdot e_{3}=0, e_{i} \cdot e_{j}=0 \text { for } i \neq j
$$



## What is Cayley-Klein geometry?

| Signature of Q | $\kappa$ | Space | Symbol |
| :---: | :---: | :---: | :---: |
| $(n+1,0,0)$ | +1 | elliptic | $\mathbf{E l l}^{\mathbf{n}}, \mathbf{S}^{\mathbf{n}}$ |
| $(n, 1,0)$ | -1 | hyperbolic | $\mathbf{H}^{\mathbf{n}}$ |
| $"(n, 0,1) "$ | 0 | euclidean | $\mathbf{E}^{\mathbf{n}}$ |

## 3D Examples



The Sudanese Moebius band in $S^{3}$ discovered by Sue Goodman and Dan Asimov, visualized in UNC-CH Graphics Lab, 1979.

## 3D Examples



Tessellation of $H^{3}$ with regular right-angled dodecahedra (from "Not Knot", Geometry Center, 1993).

## 3D Examples



The 120-cell, a tessellation of the 3 -sphere $\mathbf{S}^{\mathbf{3}}$ (PORTAL VR, TU-Berlin, 18.09.09)

## Cayley-Klein geometries for $\boldsymbol{n}=2$



| Name | elliptic | euclidean | hyperbolic |
| :---: | :---: | :---: | :---: |
| signature | $(3,0,0)$ | $"(2,0,1) "$ | $(2,1,0)$ |
| null points | $x^{2}+y^{2}+z^{2}=0$ |  | $x^{2}+y^{2}-z^{2}=0$ |

## Cayley-Klein geometries for $\boldsymbol{n}=2$



| Name | elliptic | euclidean | hyperbolic |
| :---: | :---: | :---: | :---: |
| signature | $(3,0,0)$ | $"(2,0,1) "$ | $(2,1,0)$ |
| null points | $x^{2}+y^{2}+z^{2}=0$ | $z^{2}=0$ | $x^{2}+y^{2}-z^{2}=0$ |

## Example Cayley-Klein geometries for $n=2$



| Name | elliptic | euclidean | hyperbolic |
| :---: | :---: | :---: | :---: |
| signature | $(3,0,0)$ | $"(2,0,1)$ " | $(2,1,0)$ |
| null points | $x^{2}+y^{2}+z^{2}=0$ | $\sim^{2}-0$ | $\alpha^{2}+\alpha^{2} \tilde{z}^{2}-0$ |
| null lines* | $a^{2}+b^{2}+c^{2}=0$ | $a^{2}+b^{2}=0$ | $a^{2}+b^{2}-c^{2}=0$ |

*The line $a x+b y+c z=0$ has line coordinates ( $a, b, c$ ).

## Question

## What is the best way <br> to do Cayley-Klein geometry on the computer?

## Question

## What is the best way <br> to do Cayley-Klein geometry on the computer?



## Question

## What is the best way <br> to do Cayley-Klein geometry on the computer?



Vector + linear algebra


Vector + linear algebra




But it's 2019 now. Can we do better?

## Cayley-Klein programmer's wish list



## Cayley-Klein programmer's wish list



## Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Coordinate-free

## Cayley-Klein programmer's wish list

## Uniform rep'n for points, lines, and planes

Parallel-safe meet and join operators


## Cayley-Klein programmer's wish list

## Uniform rep'n for points, lines, and planes

## Parallel-safe meet and join operators L

## Single, uniform rep'n for isometries

## Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Parallel-safe meet and join operators

Single, uniform rep'n for isometries

Compact expressions for classical geometric results


Coordinate-free

## Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

## Parallel-safe meet and join operators

Single, uniform rep'n for isometries

Compact expressions for classical geometric results


## Physics-ready

Coordinate-free

## Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

## Parallel-safe meet and join operators

Single, uniform rep'n for isometries

Compact expressions for classical geometric results

## Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Parallel-safe meet and join operators

Single, uniform rep'n for isometries

Compact expressions for classical geometric results

## Partial solutions: Quaternions (1843)



A 4D algebra generated by units $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ satisfying:

$$
\begin{gathered}
1^{2}=1, \quad \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1 \\
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}, \ldots
\end{gathered}
$$

## Quaternions

| Quaternions $\mathbb{H}$ | $s+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ |
| :--- | :---: |
| Im. quaternions $\mathbb{H} \mathbb{H}$ | $\mathbf{v}:=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \Leftrightarrow(x, y, z) \in \mathbb{R}^{3}$ |
| Unit quaternions $\mathbb{U}$ | $\{\mathbf{g} \in \mathbb{H} \mid \mathbf{g} \overline{\mathbf{g}}=1\}$ |

## Quaternions

| Quaternions $\mathbb{H}$ | $s+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ |
| :--- | :---: |
| Im. quaternions $\mathbb{H} H$ | $\mathbf{v}:=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \Leftrightarrow(x, y, z) \in \mathbb{R}^{3}$ |
| Unit quaternions $\mathbb{U}$ | $\{\mathbf{g} \in \mathbb{H} \mid \mathbf{g} \overline{\mathbf{g}}=1\}$ |

## I. Geometric product:

$$
\mathbf{v}_{1} \mathbf{v}_{2}=-\mathbf{v}_{1} \cdot \mathbf{v}_{2}+\mathbf{v}_{1} \times \mathbf{v}_{2}
$$



## Quaternions

| Quaternions $\mathbb{H}$ | $s+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ |
| :--- | :---: |
| Im. quaternions $\mathbb{H} H$ | $\mathbf{v}:=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \Leftrightarrow(x, y, z) \in \mathbb{R}^{3}$ |
| Unit quaternions $\mathbb{U}$ | $\{\mathbf{g} \in \mathbb{H} \mid \mathbf{g} \overline{\mathbf{g}}=1\}$ |

## I. Geometric product:

$$
\mathbf{v}_{1} \mathbf{v}_{2}=-\mathbf{v}_{1} \cdot \mathbf{v}_{2}+\mathbf{v}_{1} \times \mathbf{v}_{2}
$$



## Quaternions

| Quaternions $\mathbb{H}$ | $s+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ |
| :--- | :---: |
| Im. quaternions $\mathbb{H} \mathbb{H}$ | $\mathbf{v}:=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \Leftrightarrow(x, y, z) \in \mathbb{R}^{3}$ |
| Unit quaternions $\mathbb{U}$ | $\{\mathbf{g} \in \mathbb{H} \mid \mathbf{g} \overline{\mathbf{g}}=1\}$ |

## II. Rotations via sandwiches:

1. For $\mathbf{g} \in \mathbb{U}$, there exists $\mathbf{x} \in \mathbb{H} \mathbb{H}$ so that

$$
\mathbf{g}=\cos (t)+\sin (t) \mathbf{x}=e^{t \mathbf{x}}
$$

2. For any $\mathbf{v} \in \mathbb{H}\left(\cong \mathbb{R}^{3}\right)$, the "sandwich"

$$
\mathbf{g v} \overline{\mathrm{g}}
$$

rotates $\mathbf{v}$ around the axis $\mathbf{x}$ by an angle $2 t$.
3. Comparison to matrices.

## Quaternions

| Quaternions $\mathbb{H}$ | $s+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ |
| :--- | :---: |
| Im. quaternions $\mathbb{H} \mathbb{H}$ | $\mathbf{v}:=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \Leftrightarrow(x, y, z) \in \mathbb{R}^{3}$ |
| Unit quaternions $\mathbb{U}$ | $\{\mathbf{g} \in \mathbb{H} \mid \mathbf{g} \overline{\mathbf{g}}=1\}$ |

## Advantages

I. Geometric product
II. Rotations as sandwiches

Disadvantages
I. Only applies to points/vectors
II. Special case $\mathbb{R}^{3}$

## Partial solutions: Grassmann algebra



Hermann Grassmann (1809-1877)
Ausdehnungslehre (1844)

## Grassmann algebra

The wedge ( $\wedge$ ) product in $\mathbb{R} P^{2}$ and $\mathbb{R} P^{2 *}$


Grassmann algebra


## Grassmann algebra



## Standard projective

$\mathbf{x} \wedge \mathbf{y}$ is join
yields $\wedge \mathbb{R} P^{2}$

## Grassmann algebra



Standard projective
$\mathbf{x} \wedge \mathbf{y}$ is join
yields $\bigwedge \mathbb{R} P^{2}$


Dual projective
$\mathbf{x} \wedge \mathbf{y}$ is meet yields $\bigwedge \mathbb{R} P^{2 *}$

## Grassmann algebra

The dual projective
Grassmann algebra $\bigwedge \mathbb{R} P^{2 *}$


| Grade | Sym | Generators | Dim. | Type |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\Lambda^{0}$ | 1 | 1 | Scalar |
| 1 | $\Lambda^{1}$ | $\left\{\mathbf{e}_{0}, \mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ | 3 | Line |
| 2 | $\Lambda^{2}$ | $\left\{\mathbf{E}_{i}=\mathbf{e}_{j} \wedge \mathbf{e}_{k}\right\}$ | 3 | Point |
| 3 | $\Lambda^{3}$ | $\mathbf{I}=\mathbf{e}_{0} \wedge \mathbf{e}_{1} \wedge \mathbf{e}_{2}$ | 1 | Pseudoscalar |

## Grassmann algebra

The dual projective
Grassmann algebra $\bigwedge \mathbb{R} P^{2 *}$


| Grade | Sym | Generators | Dim. | Type |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\Lambda^{0}$ | 1 | 1 | Scalar |
| 1 | $\Lambda^{1}$ | $\left\{\mathbf{e}_{0}, \mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ | 3 | Line |
| 2 | $\Lambda^{2}$ | $\left\{\mathbf{E}_{i}=\mathbf{e}_{j} \wedge \mathbf{e}_{k}\right\}$ | 3 | Point |
| 3 | $\Lambda^{3}$ | $\mathbf{I}=\mathbf{e}_{0} \wedge \mathbf{e}_{1} \wedge \mathbf{e}_{2}$ | 1 | Pseudoscalar |

We will be using $\bigwedge \mathbb{R} P^{n *}$ for the rest of the talk.

## Grassmann algebra

The wedge ( $\wedge$ ) product in $\mathbb{R} P^{2}$

## Properties of $\wedge$

1. Antisymmetric: For 1 -vectors $\mathbf{x}, \mathbf{y}$ :

$$
\begin{gathered}
\mathbf{x} \wedge \mathbf{y}=-\mathbf{y} \wedge \mathbf{x} \\
\mathbf{x} \wedge \mathbf{x}=0
\end{gathered}
$$

2. Subspace lattice: For linearly independent subspaces $\mathbf{x} \in$ $\Lambda^{k}, \mathbf{y} \in \Lambda^{m}, \mathbf{x} \wedge \mathbf{y} \in \Lambda^{k+m}$ is the subspace spanned by $\mathbf{x}$ and $\mathbf{y}$ otherwise it's zero.

Note: The regressive (join) product $\vee$ is also available.
(Then it's called a Grassmann-Cayley algebra.)

## Grassmann algebra

Note: spanning subspace means different things in standard and dual setting. In 3D:

Standard: a line is the subspace spanned by two points.

Dual: a line is the subspace spanned by two planes.


## Grassmann algebra

## Advantages

1. Points, lines, and planes are equal citizens.
2. "Parallel-safe" meet and join operators since projective.

## Disadvantages

1. Only incidence (projective), no metric.

## Clifford's geometric algebra



William Kingdon Clifford (1845-1879)
"Applications of Grassmann's extensive algebra" (1878):
His stated aim: to combine quaternions with Grassmann algebra.

## Clifford's geometric algebra

Geometric product extends the wedge product and is defined for two 1 -vectors as:

$$
\begin{aligned}
& \mathbf{x y}:=\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \wedge \mathbf{y} \\
& \text { 0-vector } \quad \text { 2-vector }
\end{aligned}
$$

where $\cdot$ is the inner product induced by $\mathbf{Q}$.
Since the two terms measure different aspects, the sum is (usually) non-zero.

This product can be extended to the whole Grassmann algebra to produce the geometric algebra $\mathbf{P}\left(\mathbb{R}_{p, n, z}^{*}\right)$.

## Clifford's geometric algebra

Geometric product extends the wedge product and is defined for two 1 -vectors as:

where $\cdot$ is the inner product induced by $\mathbf{Q}$.
Since the two terms measure different aspects, the sum is (usually) non-zero.

This product can be extended to the whole Grassmann algebra to produce the geometric algebra $\mathbf{P}\left(\mathbb{R}_{p, n, z}^{*}\right)$.

## Projective geometric algebra

We call an algebra constructed in this way a projective geometric algebra (PGA).
We are interested in $\mathbf{P}\left(\mathbb{R}_{3,0,0}^{*}\right), \mathbf{P}\left(\mathbb{R}_{2,1,0}^{*}\right), \mathbf{P}\left(\mathbb{R}_{2,0,1}^{*}\right)$.
We sometimes write $\mathbf{P}\left(\mathbb{R}_{k}^{*}\right)$ and leave the metric open.

We can choose a fundamental triangle so that:

$$
\begin{gathered}
\mathbf{e}_{0}^{2}=\kappa, \mathbf{e}_{1}^{2}=\mathbf{e}_{2}^{2}=1 \\
(\kappa \in\{-1,0,1\})
\end{gathered}
$$

$$
\mathbf{E}_{k}:=\mathbf{e}_{i} \mathbf{e}_{j}=\mathbf{e}_{i} \wedge \mathbf{e}_{j}=-\mathbf{e}_{j} \mathbf{e}_{i}
$$

$$
\mathbf{I}:=\mathbf{e}_{0} \mathbf{e}_{1} \mathbf{e}_{2}
$$



## 2D PGA

Example: Two lines, let $e_{0}^{2}=\kappa$

$$
\begin{gathered}
\mathbf{a}=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2} \\
\mathbf{b}=b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2} \\
\mathbf{a b}=\left(a_{0} b_{0} e_{0}^{2}+a_{1} b_{1} e_{1}^{2}+a_{2} b_{2} e_{2}^{2}\right) \\
+\left(a_{0} b_{1}-a_{1} b_{0}\right) e_{0} e_{1}+\left(a_{1} b_{2}-a_{2} b_{1}\right) e_{1} e_{2}+\left(a_{0} b_{2}-a_{2} b_{0}\right) e_{0} e_{2} \\
=\left(a_{0} b_{0} \kappa+a_{1} b_{1}+a_{2} b_{2}\right) \\
+\left(a_{1} b_{2}-a_{2} b_{1}\right) E_{0}+\left(a_{2} b_{0}-a_{0} b_{2}\right) E_{1}+\left(a_{0} b_{1}-a_{1} b_{0}\right) E_{2} \\
=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}
\end{gathered}
$$

## 2D PGA

Example: Two lines, let $e_{0}^{2}=\kappa$

$$
\begin{gathered}
\begin{array}{c}
\mathbf{a}=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2} \\
\mathbf{b}=b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2} \\
\mathbf{a b}=\left(a_{0} b_{0} e_{0}^{2}+a_{1} b_{1} e_{1}^{2}+a_{2} b_{2} e_{2}^{2}\right) \\
+\left(a_{0} b_{1}-a_{1} b_{0}\right) e_{0} e_{1}+\left(a_{1} b_{2}-a_{2} b_{1}\right) e_{1} e_{2}+\left(a_{0} b_{2}-a_{2} b_{0}\right) e_{0} e_{2} \\
=\left(a_{0} b_{0} \kappa+a_{1} b_{1}+a_{2} b_{2}\right) \\
+\left(a_{1} b_{2}-a_{2} b_{1}\right) E_{0}+\left(a_{2} b_{0}-a_{0} b_{2}\right) E_{1}+\left(a_{0} b_{1}-a_{1} b_{0}\right) E_{2} \\
\mathbf{a}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b} \\
\hline \text { Looks like cross product but is } \\
\text { the point incident to both lines. }
\end{array} \text { }
\end{gathered}
$$

## 2D PGA

Example: $\kappa=1$ and $c=\frac{1}{\sqrt{2}}$ and

$$
\mathbf{a}=e_{0}, \quad \mathbf{b}=c e_{0}+c e_{1}
$$

Then $\mathbf{a}^{2}=\mathbf{b}^{2}=1$.
$\mathbf{a}$ is the equator great circle $z=0$ and $\mathbf{b}$ is tilted up from it an angle of $45^{\circ}$.

$$
\mathbf{a b}=c+E_{2}
$$

Check: $\cos ^{-1}(c)=45^{\circ}$ and $\mathbf{E}_{2}$ is the common point.

## 2D Euclidean PGA

We can now explain why $P\left(\mathbb{R}_{2,0,1}^{*}\right)$ is the right choice for the euclidean plane.

The inner product of two lines is

$$
\mathbf{a} \cdot \mathbf{b}=\left(a_{0} b_{0} \kappa+a_{1} b_{1}+a_{2} b_{2}\right)
$$

For a euclidean line changing $a_{0}$ or $b_{0}$ doesn't change the direction of the line. It just moves it parallel to itself. This means $e_{0}^{2}=0$.


## Clifford's geometric algebra

|  | $\mathbf{1}$ | $\mathbf{e}_{0}$ | $\mathbf{e}_{1}$ | $\mathbf{e}_{2}$ | $\mathbf{E}_{0}$ | $\mathbf{E}_{1}$ | $\mathbf{E}_{2}$ | $\mathbf{I}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{e}_{0}$ | $\mathbf{e}_{1}$ | $\mathbf{e}_{2}$ | $\mathbf{E}_{0}$ | $\mathbf{E}_{1}$ | $\mathbf{E}_{2}$ | $\mathbf{I}$ |
| $\mathbf{e}_{0}$ | $\mathbf{e}_{0}$ | $\kappa$ | $\mathbf{E}_{2}$ | $-\mathbf{E}_{1}$ | $\mathbf{I}$ | $-\kappa \mathbf{e}_{2}$ | $\kappa \mathbf{e}_{1}$ | $\kappa \mathbf{E}_{0}$ |
| $\mathbf{e}_{1}$ | $\mathbf{e}_{1}$ | $-\mathbf{E}_{2}$ | $\mathbf{1}$ | $\mathbf{E}_{0}$ | $\mathbf{e}_{2}$ | $\mathbf{I}$ | $-\mathbf{e}_{0}$ | $\mathbf{E}_{1}$ |
| $\mathbf{e}_{2}$ | $\mathbf{e}_{2}$ | $\mathbf{E}_{1}$ | $-\mathbf{E}_{0}$ | $\mathbf{1}$ | $-\mathbf{e}_{1}$ | $\mathbf{e}_{0}$ | $\mathbf{I}$ | $\mathbf{E}_{2}$ |
| $\mathbf{E}_{0}$ | $\mathbf{E}_{0}$ | $\mathbf{I}$ | $-\mathbf{e}_{2}$ | $\mathbf{e}_{1}$ | $-\mathbf{1}$ | $-\mathbf{E}_{2}$ | $\mathbf{E}_{1}$ | $-\mathbf{e}_{0}$ |
| $\mathbf{E}_{1}$ | $\mathbf{E}_{1}$ | $\kappa \mathbf{e}_{2}$ | $\mathbf{I}$ | $-\mathbf{e}_{0}$ | $\mathbf{E}_{2}$ | $-\kappa$ | $-\kappa \mathbf{E}_{\phi}-\kappa \mathbf{e}_{1}$ |  |
| $\mathbf{E}_{2}$ | $\mathbf{E}_{2}$ | $-\kappa \mathbf{e}_{1}$ | $\mathbf{e}_{0}$ | $\mathbf{I}$ | $-\mathbf{E}_{1}$ | $\kappa \mathbf{E}_{0}$ | $-\kappa$ | $-\kappa \mathbf{e}_{2}$ |
| $\mathbf{I}$ | $\mathbf{I}$ | $\kappa \mathbf{E}_{0}$ | $\mathbf{E}_{1}$ | $\mathbf{E}_{2}$ | $-\mathbf{e}_{0}$ | $-\kappa \mathbf{e}_{1}$ | $-\kappa \mathbf{e}_{2}$ | $-\kappa$ |

Multiplication table for 2D PGA. $\kappa \in\{-1,0,1\}$

## 2D PGA Preliminaries

1. We can normalize a proper line $\mathbf{m}$ or point $\mathbf{P}$ so that:

$$
\mathbf{m}^{2}=1, \quad \mathbf{P}^{2}=-\kappa
$$

1a. Elements such that $\mathbf{x}^{2}=0$ are called ideal.
1b. Formulas given below often assume normalized arguments.

## PGA: 2-way products

2. Multiplication with I: For any $k$-vector $\mathbf{x}, \mathbf{x}^{\perp}:=\mathbf{x I}$ is the orthogonal complement of $\mathbf{x}$.
Example: $\mathbf{e}_{0} \mathbf{I}=\kappa \mathbf{e}_{1} \mathbf{e}_{2}$. The only thing left in $\mathbf{I}$ is what isn't in $\mathbf{X}$.
2a. In the euclidean case, $\mathbf{I}^{2}=0$.

## PGA: 2-way products

2. Multiplication with I: For any $k$-vector $\mathbf{x}, \mathbf{x}^{\perp}:=\mathbf{x I}$ is the orthogonal complement of $\mathbf{x}$.
Example: $\mathbf{e}_{0} \mathbf{I}=\kappa \mathbf{e}_{1} \mathbf{e}_{2}$. The only thing left in $\mathbf{I}$ is what isn't in $\mathbf{X}$.
2a. In the euclidean case, $\mathbf{I}^{2}=0$.


## PGA: 2-way products

3. Product of two proper lines $\mathbf{a}, \mathbf{b}$ that meet at a proper point $\mathbf{P}$ :

$$
\mathbf{a b}=\cos (t)+\sin (t) \mathbf{P}
$$

where $t$ is the angle between the lines (arbitrary $\kappa$ ).


## PGA: 2-way products

3a. Product of two proper lines $\mathbf{a}, \mathbf{b} \kappa=-1, \mathbf{P}$ is hyper-ideal point. Then

$$
\mathbf{a b}=\cosh (d)+\sinh (d) \mathbf{P}
$$

where $d$ is the hyperbolic distance between the lines.


## PGA: 2-way products

4. Product of proper line $\mathbf{c}$ and proper point $\mathbf{Q}$ :

$$
\mathbf{c Q}=\mathbf{c} \cdot \mathbf{Q}+(\cosh d) \mathbf{I}\left(=\langle c Q\rangle_{1}+\langle c Q\rangle_{3}\right)
$$

The first term is the line through $\mathbf{Q}$ perpendicular to $\mathbf{c}$, sometimes written $\mathbf{a}_{\mathbf{Q}}^{\perp} \cdot d$ is the distance from point to line.


## PGA: 2-way products

5. Product of two proper points $\mathbf{P}, \mathbf{Q}$. Then

$$
\mathbf{P Q}=\cosh (d)+\sinh (d) \mathbf{R}
$$

$d$ is the distance between the two points and $\mathbf{R}$ is the normalized form of $\langle\mathbf{P Q}\rangle_{2}$, which is the common orthogonal $(\mathbf{P} \vee \mathbf{Q})^{\perp}$.


## Isometries via 3-way products

## Reflections

Consider the 3-way product $\mathbf{X}^{\prime}=\mathbf{a X a}$, where $\mathbf{a}$ is a proper line and $\mathbf{X}$ is anything.

Then $\mathbf{X}^{\prime}$ is the reflection of $\mathbf{X}$ in the line $\mathbf{a}$.

$a$


## Isometries via 3-way products

## Rotations

A reflection in a second proper line $\mathbf{b}$ gives $\mathbf{X}^{\prime}=\mathbf{b}(\mathbf{a X a}) \mathbf{b}=(\mathbf{b a}) \mathbf{X}(\mathbf{a b})$, by associativity. $\mathbf{r}:=\mathbf{b a}$ is called a rotor and $X^{\prime}=R X \widetilde{R}$ where $\widetilde{R}$ is reversal operator.


## Isometries via 3-way products

## Euclidean translations

If $\kappa=0$ and $\mathbf{P}$ is ideal, $\mathbf{X}^{\prime}$ is a translation of distance 2 d , where d is the distance betwen a and b . Similar results for $\kappa=-1$.


## Quaternions in 2D elliptic PGA

|  | $\mathbf{1}$ | $\mathbf{e}_{0}$ | $\mathbf{e}_{1}$ | $\mathbf{e}_{2}$ | $\mathbf{E}_{0}$ | $\mathbf{E}_{1}$ | $\mathbf{E}_{2}$ | $\mathbf{I}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{e}_{0}$ | $\mathbf{e}_{1}$ | $\mathbf{e}_{2}$ | $\mathbf{E}_{0}$ | $\mathbf{E}_{1}$ | $\mathbf{E}_{2}$ | $\mathbf{I}$ |
| $\mathbf{e}_{0}$ | $\mathbf{e}_{0}$ | $\kappa$ | $\mathbf{E}_{2}$ | $-\mathbf{E}_{1}$ | $\mathbf{I}$ | $-\kappa \mathbf{e}_{2}$ | $\kappa \mathbf{e}_{1}$ | $\kappa \mathbf{E}_{0}$ |
| $\mathbf{e}_{1}$ | $\mathbf{e}_{1}$ | $-\mathbf{E}_{2}$ | $\mathbf{1}$ | $\mathbf{E}_{0}$ | $\mathbf{e}_{2}$ | $\mathbf{I}$ | $-\mathbf{e}_{0}$ | $\mathbf{E}_{1}$ |
| $\mathbf{e}_{2}$ | $\mathbf{e}_{2}$ | $\mathbf{E}_{1}$ | $-\mathbf{E}_{0}$ | $\mathbf{1}$ | $-\mathbf{e}_{1}$ | $\mathbf{e}_{0}$ | $\mathbf{I}$ | $\mathbf{E}_{2}$ |
| $\mathbf{E}_{0}$ | $\mathbf{E}_{0}$ | $\mathbf{I}$ | $-\mathbf{e}_{2}$ | $\mathbf{e}_{1}$ | $-\mathbf{1}$ | $-\mathbf{E}_{2}$ | $\mathbf{E}_{1}$ | $-\mathbf{e}_{0}$ |
| $\mathbf{E}_{1}$ | $\mathbf{E}_{1}$ | $\kappa \mathbf{e}_{2}$ | $\mathbf{I}$ | $-\mathbf{e}_{0}$ | $\mathbf{E}_{2}$ | $-\kappa$ | $-\kappa \mathbf{E}_{1}$ | $-\kappa \mathbf{e}_{1}$ |
| $\mathbf{E}_{2}$ | $\mathbf{E}_{2}$ | $-\kappa \mathbf{e}_{1}$ | $\mathbf{e}_{0}$ | $\mathbf{I}$ | $-\mathbf{E}_{1}$ | $\kappa \mathbf{E}_{0}$ | $-\kappa$ | $-\kappa \mathbf{e}_{2}$ |
| $\mathbf{I}$ | $\mathbf{I}$ | $\kappa \mathbf{E}_{0}$ | $\mathbf{E}_{1}$ | $\mathbf{E}_{2}$ | $-\mathbf{e}_{0}$ | $-\kappa \mathbf{e}_{1}$ | $-\kappa \mathbf{e}_{2}$ | $-\kappa$ |

For $\kappa=1$, the even sub-algebra (shown in red) is
 isomorphic to $\mathbb{H}$ under the map

$$
\left\{1, \mathbf{E}_{0}, \mathbf{E}_{1}, \mathbf{E}_{2}\right\} \Leftrightarrow\{1, \mathbf{k}, \mathbf{j}, \mathbf{i}\}
$$

## Exponentiating bivectors

Every rotor can be produced directly by exponentation of a bivector. When $\mathbf{P}^{2}=-1$ then

$$
\mathbf{r}:=\exp (t \mathbf{P})=\cos (t)+\sin (t) \mathbf{P}
$$

$\mathbf{r X} \mathbf{X}$ produces a rotation through angle $2 t$ around $\mathbf{P}$.
Analogous results hold for $\mathbf{P}^{2}=0$ or 1 yielding parabolic or hyperbolic isometries.

## The ideal norm

$\mathbf{P}^{2}=0$ : how to normalize $\mathbf{P}$ so $e^{d P}$ is a translation of 2 d ? Time permitting $\ldots$

## Lie algebra and Lie group

The bivectors $\Lambda^{2}$ form the Lie algebra.
Define $\mathbf{G}$ to be the elements of the even sub-algebra of norm 1. Then $\mathbf{G}$ is the Lie group.
And exp : $\Lambda^{2} \rightarrow \mathbf{G}$ is a 1:1 map up to multiples of $2 \pi$ (for $n=3$ ).


## Formula factories via 3-way products

3-way products with a repeated factor of the form $\mathbf{Y X X}$ can be used as formula factories.
Example: $\mathbf{m}=\mathbf{m}(\mathbf{n n})=(\mathbf{m n}) \mathbf{n}$ since for a proper line $\mathbf{n}^{2}=1$ and associativity. This leads to a decomposition of $\mathbf{m}$ with respect to $\mathbf{n}$ :

$$
\begin{gathered}
(m n) n=(\cos (\alpha)+\sin (\alpha) \mathbf{P}) n \\
\quad=\cos (\alpha) n+\sin (\alpha) P n \\
\quad=\cos (\alpha) n+\sin (\alpha) P \cdot n \\
\quad=\cos (\alpha) n-\sin (\alpha) n \cdot P
\end{gathered}
$$

The arrows show the orientation of the lines.


## Formula factories via 3-way products

Examples: Anything can be orthogonally decomposed with respect to anything else! For example ...


Decompose point WRT line.


Decompose line WRT point.

The pieces of the decomposition are often interesting in their own right. For example, $(P \cdot m) m$ is closest point to $P$ on $m$.

## Formula factories via 3-way products

General 3-way products abc of 1-vectors provide a useful framework for a general theory of triangles. Lots left to do!


## 2D PGA in the browser

A euclidean demo from Steven De Keninck, using his ganja.js Javascript implementation, showing several of the features discussed above.


$$
\begin{aligned}
& \ell=\text { line (vector) } \\
& P=\text { point (bivector) } \\
& \ell P=\text { line through } P, \perp \text { to } \ell \\
& \ell P \ell=\text { reflection of } P \text { in } \ell \\
& P \ell P=\text { reflection of } \ell \text { in } P \\
& (\ell \cdot P) \ell=\text { projection of } P \text { on } \ell \\
& (P \cdot \ell) P=\text { projection of } \ell \text { on } P
\end{aligned}
$$

These slides are available at https://slides.com/skydog23/icerm2019/live

## Glimpse at 3D

## Bivectors!

Julius Pluecker

## Climpse at 3D

## Bivectors!



## Glimpse at 3D



## Kinematics and Mechanics

A velocity state is $\mathbf{V} \in \Lambda^{2}$ (in this case a point)
A momentum state is $\mathbf{M} \in \Lambda^{n-2}$ (in this case a line)
A rigid body is a collection of Newtonian mass points.
Calculate inertia tensor $A$ for the body, a quadratic form determined by the mass distribution.
$\mathbf{M}=A \mathbf{V}$

## ODE's for free top:

PGA equations for the free top in $P\left(\mathbb{R}_{\kappa}^{*}\right)$ :

$$
\begin{aligned}
\dot{\mathbf{g}} & =\mathbf{g V} \\
\dot{\mathbf{M}} & =\frac{1}{2}(\mathbf{V M}-\mathbf{M V})
\end{aligned}
$$

where $\mathbf{g} \in \mathbf{G}$, and $\mathbf{M}$ and $\mathbf{V a r e}$ in the body frame.

## 2D Kinematics and Mechanics

## Advantages of PGA:

1. Euclidean case: No splitting into linear and angular parts. A linear velocity is a velocity carried by an ideal point (euclidean). An angular momentum (or force couple) is one carried by the ideal line.
2. Similar results hold in 3D.
3. The equations are numerically optimal compared to matrix methods. Normalizing $\mathbf{g}$ keeps it on the solution space.

## 2D Kinematics and Mechanics

## 3D Kinematics and Mechanics




## 3D

## Poinsot motion (?)



## Cayley-Klein programmer's wish list



## Cayley-Klein programmer's wish list

## Uniform rep'n for points, lines, and planes

Parallel-safe meet and join operators


## Cayley-Klein programmer's wish list

## Uniform rep'n for points, lines, and planes

Parallel-safe meet and join operators


Metric-neutral

## Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Parallel-safe meet and join operators

Single, uniform rep'n for isometries

Compact expressions for classical geometric results

Metric-neutral

## Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

## Parallel-safe meet and join operators

Single, uniform rep'n for isometries

Compact expressions for classical geometric results


Physics-ready
Metric-neutral

## Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Parallel-safe meet and join operators

Single, uniform rep'n for isometries

Compact expressions for classical geometric results

Metric-neutral

## Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Parallel-safe meet and join operators

Single, uniform rep'n for isometries

Compact expressions for classical geometric results

## Conclusions

- Dual PGA fulfills the "programmers wish list" from the beginning.
- It completes Clifford's project (cut short by his death) of combining Grassmann algebra with all biquaternions, not just the elliptic ones.
- There's a lot left to explore, both in non-euclidean and euclidean, 2D and 3D.
- Team members sought to create browser-based metric-neutral PGA scene graph with physics engine.
- Ask me about ideal norms and dual euclidean space.



## Resources

Javascript implementation Steven De Keninck ganja.js

## SIGGRAPHZU1Y



## \{2D Projective Geometric Algebra \}

2D PGA Cheat Sheet Siggraph 2019 Course Notes

| BASICS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basis \& Metric: |  |  |  |  |  |  |  |
| $\mathbb{R}_{2,0,1}^{*}$ |  |  |  |  |  |  |  |
|  | VECTOR |  |  | BIVECTOR |  |  | I= PSS |
| 1 | $\mathbf{e}_{0}$ | $\mathrm{e}_{1}$ | $\mathbf{e}_{2}$ | $\mathbf{e}_{01}$ | $\mathbf{e}_{20}$ | $\mathrm{e}_{12}$ | $\mathbf{e}_{012}$ |
| +1 | 0 | +1 | +1 | 0 | 0 | -1 | 0 |
|  | LINE : $\ell$ |  |  | POINT : P |  |  |  |
| Multiplication Table: |  |  |  |  |  |  |  |
| 1 | $\mathrm{e}_{0}$ | $\mathbf{e}_{1}$ | $\mathbf{e}_{2}$ | $\mathbf{e}_{01}$ | $\mathbf{e}_{20}$ | $\mathrm{e}_{12}$ | $\mathbf{e}_{012}$ |
| $\mathbf{e}_{0}$ | 0 | $\mathrm{e}_{01}$ | $-\mathbf{e}_{20}$ | 0 | 0 | $\mathbf{e}_{012}$ | 2 |
| $\mathrm{e}_{1}$ | $-\mathbf{e}_{01}$ | 1 | $\mathrm{e}_{12}$ | $-e_{0}$ | $\mathbf{e}_{012}$ | $\mathrm{e}_{2}$ | $\mathbf{e}_{20}$ |
| $\mathbf{e}_{2}$ | $\mathbf{e}_{20}$ | $-e_{12}$ | 1 | $\mathrm{e}_{012}$ | $\mathrm{e}_{0}$ | - $\mathrm{e}_{1}$ | $\mathbf{e}_{01}$ |
| $\mathbf{e}_{01}$ | 0 | $\mathrm{e}_{0}$ | $\mathbf{e}_{012}$ | 0 | 0 | $-\mathbf{e}_{20}$ |  |
| $\mathbf{e}_{20}$ | 0 | $\mathbf{e}_{012}$ | - $\mathrm{e}_{0}$ | 0 | 0 | $\mathrm{e}_{01}$ | 0 |
| $\mathrm{e}_{12}$ | $\mathbf{e}_{012}$ | $-\mathrm{e}_{2}$ | $\mathbf{e}_{1}$ | $\mathbf{e}_{20}$ | - $\mathrm{e}_{01}$ | ${ }^{-1}$ | $-\mathrm{e}_{0}$ |
| $\mathrm{e}_{012}$ | - | $\mathrm{e}_{20}$ | $\mathrm{e}_{01}$ | 0 | 0 | $-\mathrm{e}_{0}$ | - |
| Operators: |  |  |  |  |  |  |  |
| $\begin{array}{\|c\|} \hline \mathbf{a b} \\ \mathbf{a}^{*} \\ \mathbf{a}^{\perp} \\ \tilde{\mathbf{a}} \\ \langle\mathbf{a}\rangle_{\mathbf{n}} \\ \mathbf{a} \wedge \mathbf{b} \\ \mathbf{a} \vee \mathbf{b} \\ \mathbf{a} \cdot \mathbf{b} \\ \mathbf{a} \times \mathbf{b} \end{array}$ | $\begin{gathered} \mathrm{aI} \\ \langle\mathrm{ab}\rangle_{s}, \\ \left(\mathbf{a}^{*} \wedge\right. \\ \langle\mathrm{ab}\rangle_{l} \\ \frac{1}{2}(\mathrm{ab} \\ \mathrm{ab} \\ \mathrm{ab} \end{gathered}$ | st <br> $\left.b^{*}\right)^{*}$ <br> s-t\| <br> -ba) <br> ã | Geon <br> Dual <br> Pola <br> Reve <br> Selec <br> Oute <br> Regr <br> Inne <br> Com <br> Sand | metric <br> l <br> r <br> erse <br> ct grad <br> er Prod <br> ressive <br> er Prod <br> muta <br> dwich | Prod <br> de $n$ <br> duct <br> e Prod duct <br> tor Pro <br> Produ | uct <br> uct <br> oduct <br> act | meet <br> join |
| Dual, Reverse: |  |  |  |  |  |  |  |
| Multivector | $a+b e_{0}+\mathrm{ce}_{1}+\mathrm{de}_{2}+\mathbf{e e} \mathrm{el1}^{+} \mathrm{fe}_{20}+\mathrm{ge}_{12}+\mathrm{he}_{012}$ |  |  |  |  |  |  |
| Dual | $h+g e^{0}+\mathrm{fe}^{1}+\mathrm{ee}^{2}+\mathrm{de}^{01}+\mathrm{ce}^{20}+\mathrm{be}^{12}+\mathrm{ae}^{012}$ |  |  |  |  |  |  |
| Reverse | $a+b \mathbf{e}_{0}+\mathbf{c e}_{1}+\mathrm{de}_{2}-\mathbf{e e} \mathbf{e}_{01}-\mathrm{fe}_{\mathbf{2 0}}-\mathrm{ge}_{12}-\mathrm{he}_{\mathbf{0 1 2}}$ |  |  |  |  |  |  |
| Sub-algebras: |  |  |  |  |  |  |  |
| $\begin{aligned} & \{1\} \\ & \left\{1, \mathbf{e}_{0}\right\} \\ & \left\{1, \mathbf{e}_{12}\right\} \\ & \left\{1, \mathbf{e}_{01}, \mathbf{e}_{\mathbf{2 0}}\right. \end{aligned}$ | $\begin{aligned} & \mathbb{R} \\ & \mathbb{D} \\ & \left.\mathbf{0}, \mathbf{e}_{12}\right\} \end{aligned}$ | Real <br> Dual rotors motors |  | $\begin{array}{lr} \left\{1, \mathbf{e}_{12}\right\} & \mathbb{C} \\ \left\{1, \mathbf{e}_{1}\right\} & \mathbb{D} \\ \left\{1, \mathbf{e}_{\mathbf{0 1}}, \mathbf{e}_{\mathbf{2 0}}\right\} \end{array}$ |  |  | Complex Hyperbolic translators |


| GEOMETRY |  |
| :---: | :---: |
| Points, Lines: |  |
| Euclidean point at ( $x, y$ ) | $x \mathbf{e}_{20}+y \mathbf{e}_{01}+\mathbf{e}_{12}$ |
| Direction (ideal point) ( $x, y$ ) | $x \mathbf{e}_{20}+y \mathbf{e}_{01}$ |
| Line with eq. $a \mathbf{x}+b \mathbf{y}+c=0$ | $\ell=a \mathbf{e}_{1}+b \mathbf{e}_{2}+c \mathbf{e}_{0}$ |
| Incidence: |  |
| Join points $\mathbf{P}_{1}, \mathbf{P}_{2}$ in line $\boldsymbol{\ell}$ | $\ell=\mathbf{P}_{1} \vee \mathbf{P}_{2}$ |
| Meet lines $\ell_{1}, \ell_{2}$ in point P | $P=\boldsymbol{\ell}_{1} \wedge \boldsymbol{\ell}_{2}$ |
| Project, Reject: |  |
| Line orthogonal to line $\ell$, through point $P$ | $\mathrm{P} \quad \boldsymbol{\ell} \cdot \mathbf{P}=\boldsymbol{\ell} \times \mathbf{P}$ |
| Project point $\mathbf{P}$ on line $\ell$ | $(\ell \cdot \mathbf{P}) \ell$ |
| Project line $\ell$ on point $\mathbf{P}$ | $(\ell \cdot \mathbf{P}) \mathbf{P}$ |
| Direction orthogonal to line $\boldsymbol{\ell}$ | $\ell^{\perp}:=\ell \mathbf{I}$ |
| Norms and numerical values: |  |
| Euc. norm of $\ell=c \mathbf{e}_{0}+a \mathbf{e}_{1}+b \mathbf{e}_{2}$ : $\quad \\|$ | $\\|\boldsymbol{\ell}\\|:=\sqrt{\boldsymbol{\ell}^{2}}\left(=\sqrt{a^{2}+b^{2}}\right)$ |
| Euc. norm of $\mathbf{P}=x \mathbf{e}_{20}+y \mathbf{e}_{01}+z \mathbf{e}_{12}$ : | $\\|\mathbf{P}\\|:=\sqrt{\mathbf{P} \tilde{\mathbf{P}}}\left(=\sqrt{z^{2}}\right)$ |
| Ideal norm of ideal $\mathbf{P}=x \mathbf{e}_{20}+y \mathbf{e}_{01}$ : | $\\|\mathbf{P}\\|_{\infty}:=\sqrt{x^{2}+y^{2}}$ |
| Norm of motor m | $\\|\mathbf{m}\\|:=\sqrt{\mathbf{m m}}$ |
| Numerical value of ideal $\ell=c \mathbf{e}_{0}$ : | $\\|\ell\\|_{\infty}:=c$ |
| Numerical value of pseudoscalar $a \mathbf{I}$ | $\\|a \mathbf{I}\\|_{\infty}=a$ |
| Metric: |  |
| Distance between points $\mathbf{P}_{1}, \mathbf{P}_{2}$ | $\left\\|\hat{\mathbf{P}}_{1} \vee \hat{\mathbf{P}}_{2}\right\\|,\left\\|\hat{\mathbf{P}}_{1} \times \hat{\mathbf{P}}_{2}\right\\|_{\infty}$ |
| Angle of intersecting lines $\ell_{1}, \ell_{2} \quad \cos ^{-1}\left(\hat{\ell}_{1} \cdot \hat{\ell}_{2}\right), \sin ^{-1}\left(\left\\|\hat{\ell}_{1} \wedge \hat{\ell}_{2}\right\\|\right)$ |  |
| Distance parallel lines $\boldsymbol{\ell}_{1}, \ell_{2}$ | $\left\\|\hat{\ell}_{1} \wedge \hat{\ell}_{2}\right\\|_{\infty}$ |
| Oriented dist. eucl. $\mathbf{P}$ to line $\ell$ | $\hat{\mathbf{P}} \vee \hat{\boldsymbol{\ell}},\\|\hat{\mathbf{P}} \wedge \hat{\boldsymbol{\ell}}\\|_{\infty}$ |
| Angle betw. ideal $\mathbf{P}$ and line $\ell$ | $\sin ^{-1}\\|\hat{\mathbf{P}} \wedge \hat{\boldsymbol{\ell}}\\|_{\infty}$ |
| Angle bisector of $\ell_{1}$ and $\ell_{2}$ | $\left(\hat{\ell}_{1}+\hat{\ell}_{2}\right)$ or $\hat{\ell}_{1}-\hat{\ell}_{2}$ |
| Perp. bisector of $\mathbf{P}_{1}$ and $\mathbf{P}_{2}$ | $\left(\hat{\mathbf{P}}_{1}+\hat{\mathbf{P}}_{2}\right)\left(\hat{\mathbf{P}}_{1} \vee \hat{\mathbf{P}}_{2}\right)$ |
| Altitudes of $\Delta \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3}$ | $\left(\mathbf{P}_{1} \vee \mathbf{P}_{2}\right) \cdot \mathbf{P}_{3}$, etc. |

## MOTORS

Rotors \& Translators:
$\begin{array}{lr}\text { Rotator } \alpha \text { around point } \mathbf{P}_{E} & e^{\frac{\alpha}{2} \mathbf{P}_{E}}=\cos \frac{\alpha}{2}+\sin \frac{\alpha}{2} \mathbf{P}_{E} \\ \text { Translator } d \text { orthogonal to } \mathbf{P}_{\infty} & e^{\frac{t}{2} \mathbf{P}_{\infty}}=1+\frac{d}{2} \mathbf{P}_{\infty}\end{array}$
Motor between lines $\boldsymbol{\ell}_{1}, \ell_{2} \quad \sqrt{\boldsymbol{\ell}_{2} \hat{\ell}_{1}}$
Logarithm of motor $\mathrm{m} \quad \widehat{\mathbf{m}\rangle_{2}}$
Compose \& Apply:
Compose motors $\mathrm{m}_{1}$ and $\mathrm{m}_{2}$
$\mathrm{m}_{2} \mathrm{~m}_{1}$
Normalize motor m
$\widehat{\mathbf{m}}=\frac{\mathbf{m}}{\|\mathbf{m}\|}$
$\begin{array}{lr}\text { Square root of motor } \mathbf{m} & \sqrt{\mathbf{m}}=(1+\widehat{\mathbf{m}}) \\ \text { Reflect element } \mathbf{X} \text { in line } \ell & \ell \mathbf{X} \ell\end{array}$
Transform X with motor m
mXm

| More |  |
| :---: | :---: |
| Areas: |  |
| Area of $\Delta \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3}$ | $\frac{1}{2}\left(\hat{\mathbf{P}}_{1} \vee \hat{\mathbf{P}}_{2} \vee \hat{\mathbf{P}}_{3}\right)$ |
| Length of closed loop $\mathbf{P}_{1} \mathbf{P}_{2} \ldots \mathbf{P}_{n}$ | $\frac{1}{2} \sum_{i=1}^{n-1}\left\\|\hat{\mathbf{P}}_{i} \vee \hat{\mathbf{P}}_{i+1}\right\\|$ |
| Area of closed loop $\mathbf{P}_{1} \mathbf{P}_{2} \ldots \mathbf{P}_{n}$ | $\frac{1}{2}\left\\|\left(\sum_{i=1}^{n-1} \hat{\mathbf{P}}_{i} \vee \hat{\mathbf{P}}_{i+1}\right)\right\\|_{\infty}$ |
| Rigid Body Mechanics: (Valid in euclidean, elliptic \& hyperbolic planes) |  |
| Kinematics-points, dynamics-lines | linear+angular unified |
| Element in the body/space frame | $\mathrm{x}_{b} / \mathrm{x}_{s}$ |
| Path of x under the motion g | $\mathrm{X}_{s}=\mathrm{gx}_{b} \widetilde{\mathrm{~g}}, \mathrm{x}_{b}=\widetilde{\mathrm{g}} \mathrm{x}_{s} \mathrm{~g}$ |
| Velocity $\mathbf{V}_{b}$ in the body | $\mathbf{V}_{b}=\tilde{\mathrm{g}} \dot{\mathrm{g}}$ ( a bivector) |
| Inertia tensor $\mathrm{A}: \Lambda^{2} \leftrightarrow \Lambda^{1}$ | maps vel. $\leftrightarrow$ mom. in body |
| Momentum line $\mathrm{m}_{b}$ in the body | $\mathrm{m}_{b}=\mathbf{A}\left(\mathbf{V}_{b}\right)$ |
| Kinetic energy $E$ | $E=\mathbf{m}_{b} \vee \mathbf{V}_{b}$ |
| Euler Eq. of Motion 1: | $\dot{\mathrm{g}}=\mathrm{gV}_{b}$ |
| Euler EoM 2: ( $\mathrm{f}_{b}=$ ext. forces) | $\dot{\mathbf{V}}_{b}=2 \mathbf{A}^{-1}\left(\mathbf{f}_{b}+\left(\mathbf{m}_{b} \times \mathbf{V}_{b}\right)\right)$ |
| Time derivative of energy $E$ | $\dot{E}=-2 \mathrm{f}_{b} \vee \mathrm{~V}_{b}$ |
| Work $w(t)=E(t)-E(0)$ | $=\int_{0}^{t} \dot{E} d s=-2 \int_{0}^{t} \mathbf{f}_{b} \vee \mathbf{V}_{b} d s$ |

## Resources

## Metric-neutral resources

- My Ph. D. thesis
- ganja.js


## Euclidean resources

- bivector.net/doC SIGGRAPH 2019 course notes \& cheat sheets \& course videos + more.
- Live 2D and 3D PGA demos in JavaScript
- My ResearchGate PGA project

Questions and comments: projgeom at gmail.com Thanks for your attention!

That's all

## Partial solutions: Quaternions

| Quaternions $\mathbb{H}$ | $s+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ |
| :--- | :---: |
| Im. quaternions $\mathbb{H} H$ | $\mathbf{v}:=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \Leftrightarrow(x, y, z) \in \mathbb{R}^{3}$ |
| Unit quaternions $\mathbb{U}$ | $\{\mathbf{g} \in \mathbb{H} \mid \mathbf{g} \overline{\mathbf{g}}=1\}$ |

## III. ODE's for Euler top:

Quaternion equations for the Euler top in $\mathbb{R}^{3}$ :

$$
\begin{gathered}
\dot{\mathbf{g}}=\mathbf{g V} \\
\dot{\mathbf{M}}=\frac{1}{2}(\mathbf{V M}-\mathbf{M V})
\end{gathered}
$$

where $\mathbf{g} \in \mathbb{U}$ and $\mathbf{M}, \mathbf{V} \in \mathbb{H} \mathbb{H}$ are the momentum, resp., velocity vectors in the body frame.
( $\mathbf{M}=A \mathbf{V}$ for inertia tensor $A$ ).

## Dual projective Grassmann algebra

|  | $\mathbf{1}$ | $\mathbf{e}_{0}$ | $\mathbf{e}_{1}$ | $\mathbf{e}_{2}$ | $\mathbf{E}_{0}$ | $\mathbf{E}_{1}$ | $\mathbf{E}_{2}$ | $\mathbf{I}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{e}_{0}$ | $\mathbf{e}_{1}$ | $\mathbf{e}_{2}$ | $\mathbf{E}_{0}$ | $\mathbf{E}_{1}$ | $\mathbf{E}_{2}$ | $\mathbf{I}$ |
| $\mathbf{e}_{0}$ | $\mathbf{e}_{0}$ |  | $\mathbf{E}_{2}$ | $-\mathbf{E}_{1}$ | $\mathbf{I}$ |  |  |  |
| $\mathbf{e}_{1}$ | $\mathbf{e}_{1}$ | $-\mathbf{E}_{2}$ |  | $\mathbf{E}_{0}$ |  | $\mathbf{I}$ |  |  |
| $\mathbf{e}_{2}$ | $\mathbf{e}_{2}$ | $\mathbf{E}_{1}$ | $-\mathbf{E}_{0}$ |  |  |  | $\mathbf{I}$ |  |
| $\mathbf{E}_{0}$ | $\mathbf{E}_{0}$ | $\mathbf{I}$ |  |  |  |  |  |  |
| $\mathbf{E}_{1}$ | $\mathbf{E}_{1}$ |  | $\mathbf{I}$ |  |  |  |  |  |
| $\mathbf{E}_{2}$ | $\mathbf{E}_{2}$ |  |  | $\mathbf{I}$ |  |  |  |  |
| $\mathbf{I}$ | $\mathbf{I}$ |  |  |  |  |  |  |  |

Multiplication table for $\bigwedge \mathbb{R} P^{2 *}$

## Geometric algebra notation

- General multivector is sum of k-vectors: $\mathbf{a}=\boldsymbol{\Sigma}_{k}\langle\mathbf{a}\rangle_{k}$
- Points are large letters ( $\mathbf{P}$ ) and lines are small (m).
- The unit pseudoscalar is written I.
- The product of a $k$-vector and an $m$-vector is a sum

$$
\mathbf{K M}=\boldsymbol{\Sigma}_{i=|k-m|}^{k+m}\langle\mathbf{K} \mathbf{M}\rangle_{i}
$$

where i increases by steps of 2.

- $\mathbf{K} \wedge \mathbf{M}=\langle\mathbf{K M}\rangle_{k+m}$
- $\mathbf{K} \cdot \mathbf{M}:=\langle\mathbf{K M}\rangle_{|k-m|}$
- $\mathbf{K} \times \mathbf{M}:=\mathbf{K M}-\mathbf{M K}$
- $\mathbf{K} \vee \mathbf{M}$ is the join.


## The euclidean algebra $\mathbf{P}\left(\mathbb{R}_{2,0,1}^{*}\right)$

Question: Why is the signature $(2,0,1)$ using the dual construction the proper model for the euclidean plane?

Answer: Given two lines $\mathbf{m}_{i}=c_{i} \mathbf{e}_{0}+a_{i} \mathbf{e}_{1}+b_{i} \mathbf{e}_{2}$ (with equations $a_{i} x+b_{i} y+c_{i}=0$ ). Then

$$
\mathbf{m}_{1} \cdot \mathbf{m}_{2}=c_{0} c_{1} \mathbf{e}_{0}^{2}+a_{1} a_{2} \mathbf{e}_{1}^{2}+b_{1} b_{2} \mathbf{e}_{2}^{2}
$$

Since the cosine of the angle between the lines is $a_{1} a_{2}+$ $b_{1} b_{2}, \mathbf{e}_{0}^{2}=0$ while $\mathbf{e}_{1}^{2}=\mathbf{e}_{2}^{2}=1$.


## The euclidean algebra $\mathbf{P}\left(\mathbb{R}_{2,0,1}^{*}\right)$

Question: Why is the signature $(2,0,1)$ using the dual construction the proper model for the euclidean plane?

Answer: Given two lines $\mathbf{m}_{i}=c_{i} \mathbf{e}_{0}+a_{i} \mathbf{e}_{1}+b_{i} \mathbf{e}_{2}$ (with equations $a_{i} x+b_{i} y+c_{i}=0$ ). Then

$$
\mathbf{m}_{1} \cdot \mathbf{m}_{2}=c_{0} c_{1} \mathbf{e}_{0}^{2}+a_{1} a_{2} \mathbf{e}_{1}^{2}+b_{1} b_{2} \mathbf{e}_{2}^{2}
$$

Since the cosine of the angle between the lines is $a_{1} a_{2}+$ $b_{1} b_{2}, \mathbf{e}_{0}^{2}=0$ while $\mathbf{e}_{1}^{2}=\mathbf{e}_{2}^{2}=1$.

History: That $\mathbf{P}\left(\mathbb{R}_{2,0,1}^{*}\right)$ models euclidean geometry was first published by Jon Selig in 2000.

## Question

What is the best way<br>to do Cayley-Klein geometry on the computer?

